Nuo Li Lab



For an up-to-date list of papers with links to the articles, visit the NIH Publications listing page

Chen G, Kang B, Lindsey J, Druckmann S, Li N, (2021). Modularity and robustness of frontal cortex networks. Cell, 2021 Jul 8;184(14):3717-3730

Hao Y, Thomas AM, Li N, (2021). Fully autonomous mouse behavioral and optogenetic experiments in home-cage. Elife, 2021. May 4. doi: 10.7554/eLife.66112.

Finkelstein A, Fontolan L, Economo MN, Li N, Romani S, Svoboda K, (2021). Attractor dynamics gate cortical information flow during decision-making. Nature Neuroscience. doi: 10.1038/s41593-021-00840-6.

Li N, Mrsic-Flogel TD, (2020). Cortico-cerebellar interactions during goal-directed behavior. Curr Opin Neurobiol. 65:27-37. PMCID: PMC7770085.

Liu LD, Chen S, Economo MN, Li N, Svoboda K, (2020). Accurate localization of linear probe electrodes across multiple brains. bioRxiv, 2020.02.25.965210.

Inagaki HK, Chen S, Ridder MC, Sah P, Li N, Yang Z, Hasanbegovic H., Gao Z, Gerfen CR, Svoboda K, (2020). A midbrain - thalamus - cortex circuit reorganizes cortical dynamics to initiate planned movement. bioRxiv 2020.12.16.423127.

Mahrach A, Chen G, Li N, van Vreeswijk C, Hansel D (2020). Mechanisms underlying the response of mouse cortical networks to optogenetic manipulation. Elife. 2020 Jan 17;9. pii: e49967. doi: 10.7554/eLife.49967.

Li N, Chen S, Guo ZV, Chen H, Huo Y, Inagaki HK, Chen C, Davis C, Hansel D, Guo C, Svoboda K, (2019). Spatiotemporal constraints on optogenetic inactivation in cortical circuits. Elife. 2019 Nov 18;8. pii: e48622. doi: 10.7554/eLife.48622.

Gao Z, Thomas AM, Economo MN, Abrego AM, Svoboda K, De Zeeuw CI, Li N#, (2019). Response to "Fallacies of Mice Experiments". Neuroinformatics doi: 10.1007/s12021-019-09433-y.

Gao Z, Davis C, Thomas AM, Economo MN, Abrego AM, Svoboda K, De Zeeuw CI, Li N, (2018). A cortico-cerebellar loop for motor planning. Nature 563(7729):113-116. [Dataset available on]

Svoboda K, Li N, (2017). Neural mechanisms of movement planning: motor cortex and beyond. Curr Opin Neurobiol. 49:33-41.

Chen TW, Li N, Daie K, Svoboda K, (2017). A Map of Anticipatory Activity in Mouse Motor Cortex. Neuron 94(4):866-879. [Dataset available on]

Li N*, Daie K*, Svoboda K, Druckmann S, (2016). Robust neuronal dynamics in premotor cortex during motor planning. Nature 532(7600):459-64. * Equal contribution [Dataset available on]

Li N, Chen TW, Guo ZV, Gerfen CR, Svoboda K, (2015). A motor cortex circuit for motor planning and movement. Nature 519(7541):51-56. [Dataset available on]

Guo ZV*, Li N*, Huber D, Ophir E, Gutnisky D, Ting JT, Feng G, Svoboda K, (2014). Flow of cortical activity underlying a tactile decision in mice. Neuron 81(1):179-94. * Equal contribution

Guo ZV, Hires SA, Li N, O’Connor DH, Komiyama T, Ophir E, Huber D, Bonardi C, Morandell K, Gutnisky D, Peron S , Xu NL, Cox J, Svoboda K, (2014). Procedures for behavioral experiments in head-fixed mice. PLoS ONE 9(2):e88678

O'Connor DH, Hires SA, Guo ZV, Li N, Yu J, Sun QQ, Huber D, Svoboda K, (2013). Neural coding during active somatosensation revealed using illusory touch. Nat Neurosci 16(7):958-65.

Li N, DiCarlo JJ, (2012). Neuronal learning of invariant object representation in the ventral visual stream is not dependent on reward. J Neurosci 32(19):6611-20.

Li N, DiCarlo JJ, (2010). Unsupervised natural visual experience rapidly reshapes size invariant object representation in inferior temporal cortex. Neuron 67:1062-75.

Li N, Cox DD, Zoccolan D, DiCarlo JJ, (2009). What response properties do individual neurons need to underlie position and clutter “invariant” object recognition? J Neurophysiol 102: 360-76.

Li N, DiCarlo JJ, (2008). Unsupervised natural experience rapidly alters invariant object representation in visual cortex. Science 321:1502-7.

Wei M, Li N, Newlands SD, Dickman JD, Angelaki DE, (2006). Deficits in visuospatial memory during head motion after labyrinthine lesion. J Neurophysiol 96:1676-82.

Li N, Angelaki DE, (2005). Updating visual space during motion in depth. Neuron 48:149-58.

Li N, Wei M, Angelaki DE, (2005). Primate memory saccade amplitude after intervened motion depends on target distance. J Neurophysiol 94:722-33.